skip to main content


Search for: All records

Creators/Authors contains: "Biasutti, Michela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A sequence of torrential rainstorms pounded Pakistan in the summer of 2022, shattering records by massive margins (7 sigma). The severe socioeconomic damages underscore the urgency of identifying its dynamic drivers and relationship with human-induced climate change. Here, we find that the downpours were primarily initiated by the synoptic low-pressure systems, whose intensity and longevity far exceeded their counterparts in history as fueled by a historically-high cross-equatorial moisture transport over the Arabian Sea. The moisture transport has been trending upward since the 1960s and, in 2022, along with the anomalous easterly moisture influx caused by the combination of La Niña and negative Indian Ocean Dipole events, created a corridor of heavy rainfall extending from central India toward southern Pakistan. While it is not yet established whether the observed trend of the cross-equatorial moisture transport has exceeded natural variability, model-based analysis confirms that it is consistent with the fingerprint of anthropogenic climate warming and will raise the likelihood of such rare events substantially in the coming decades.

     
    more » « less
  2. The seasonal rainy phase observed in many places across Earth is shaping the climate and is being changed by global climate trends.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) both grossly underestimate the magnitude of low-frequency Sahel rainfall variability; but unlike CMIP5, CMIP6 mean historical precipitation does not even correlate with observed multi-decadal variability. We demarcate realms of simulated physical processes that may induce differences between these ensembles and prevent both from explaining observations. We partition all influences on simulated Sahelian precipitation variability into (1) teleconnections from sea surface temperature (SST); (2) atmospheric and (3) oceanic variability internal to the climate system; (4) the SST response to external radiative forcing; and (5) the “fast” (not mediated by SST) precipitation response to radiative forcing. In a vast improvement from previous ensembles, the mean spectral power of Sahel rainfall in CMIP6 atmosphere-only simulations is consistent with observed low-frequency variance. Low-frequency variability is dominated by teleconnections from observed global SST, and the fast response only hurts the performance of simulated precipitation. We estimate that the strength of simulated teleconnections is consistent with observations using the previously-established North Atlantic Relative Index (NARI) to approximate the role of global SST, and apply this relationship to the coupled ensembles to infer that both fail to explain low-frequency historical Sahel rainfall variability mostly because they cannot explain the observed combination of forced and internal variability in North Atlantic SST. Yet differences between CMIP5 and CMIP6 in mean Sahel precipitation and its correlation with observations do not derive from differences in NARI, but from the fast response or the role of other SST patterns.

     
    more » « less
  4. Abstract

    Surface winds and precipitation over the tropical oceans are related to sea surface temperature (SST) through multiple mechanisms. Greater SST is associated with greater conditional instability, which in turn is more conducive to deep convection. The associated mass and flow responses can extend to the surface, via associated pressure gradients imprinted on the top of the planetary boundary layer (PBL). SST also influences surface pressure and wind directly through its control over PBL temperature, as explained by Lindzen and Nigam. The authors examine the relative magnitudes of these two influences over the eastern tropical Pacific on subseasonal precipitation variability during northern summer, when and where SST gradients are largest and the direct influence via PBL temperature is expected to be strongest. Geopotential at 1000 hPa is partitioned into two components: the geopotential at the PBL top (the PBL top is chosen to be 850 hPa, supported by an analysis of the vertical structure of geopotential and temperature) and the PBL thickness. These fields are composited on quintiles of daily ITCZ precipitation both with and without a high-pass filter that isolates subseasonal time scales. The PBL thickness varies little between the highest and lowest precipitation quintiles, while the PBL top geopotential varies much more. This supports a view in which the direct contribution of SST to the surface pressure and flow fields, including the associated PBL convergence over sharp SST maxima, can be viewed as a steady forcing on the rest of the column, while free-tropospheric transients contribute most of the variability associated with precipitation on subseasonal time scales.

     
    more » « less
  5. Abstract

    Dendrochronology in West Africa has not yet been developed despite encouraging reports suggesting the potential for long tree-ring reconstructions of hydroclimate in the tropics. This paper shows that even in the absence of local tree chronologies, it is possible to reconstruct the hydroclimate of a region using remote tree rings. We present the West Sub-Saharan Drought Atlas (WSDA), a new paleoclimatic reconstruction of West African hydroclimate based on tree-ring chronologies from the Mediterranean Region, made possible by the teleconnected climate relationship between the West African Monsoon and Mediterranean Sea surface temperatures. The WSDA is a one-half degree gridded reconstruction of summer Palmer Drought Severity indices from 1500 to 2018 CE, produced using ensemble point-by-point regression. Calibration and verification statistics of the WSDA indicate that it has significant skill over most of its domain. The three leading modes of hydroclimate variability in West Africa are accurately reproduced by the WSDA, demonstrating strong skill compared to regional instrumental precipitation and drought indices. The WSDA can be used to study the hydroclimate of West Africa outside the limit of the longest observed record and for integration and comparison with other proxy and archaeological data. It is also an essential first step toward developing and using local tree-ring chronologies to reconstruct West Africa’s hydroclimate.

     
    more » « less
  6. Abstract

    The TRACMIP (Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project) ensemble includes slab-ocean aquaplanet control simulations and experiments with a highly idealized narrow tropical continent (0°–45°W, 30°S–30°N). We compare the two setups to contrast the characteristics of oceanic and continental rainbands and investigate monsoon development in GCMs with CMIP5-class dynamics and physics. Over land, the rainy season occurs close to the time of maximum insolation. Other than in its timing, the continental rainband remains in an ITCZ-like regime akin to deep-tropical monsoons, with a smooth latitudinal transition, a poleward reach only slightly farther than that of the oceanic ITCZ (about 10°), and a constant width throughout the year. This confinement of the monsoon to the deep tropics is the result of a tight coupling between regional rainfall and circulation anomalies: ventilation of the lower troposphere by the anomalous meridional circulation is the main limiting mechanism, while ventilation by the mean westerly jet aloft is secondary. Comparison of two subsets of TRACMIP simulations indicates that a low heat capacity determines, to a first degree, both the timing and the strength of the regional solsticial circulation; this lends support to the choice of idealizing land as a thin slab ocean in much theoretical literature on monsoon dynamics. Yet, the timing and strength of the monsoon are modulated by the treatment of evaporation over land, especially when moisture and radiation can interact. This points to the need for a fuller exploration of land characteristics in the hierarchical modeling of the tropical rainbands.

     
    more » « less
  7. Abstract

    Sahel rainfall is dynamically linked to the global Hadley cell and to the regional monsoon circulation. It is therefore susceptible to forcings from remote oceans and regional land alike. Warming of the oceans enhances the stability of the tropical atmosphere and weakens deep ascent in the Hadley circulation. Warming of the Sahara and of the nearby oceans changes the structure and position of the regional shallow circulation and allows more of the intense convective systems that determine seasonal rain accumulation. These processes can explain the observed interannual to multidecadal variability. Sea surface temperature anomalies were the dominant forcing of the drought of the 1970s and 1980s. In most recent decades, seasonal rainfall amounts have partially recovered, but rainy season characteristics have changed: rainfall is more intense and intermittent and wetting is concentrated in the late rainy season and away from the west coast. Similar subseasonal and subregional differences in rainfall trends characterize the simulated response to increased greenhouse gases, suggesting an anthropogenic influence. While uncertainty in future projections remains, confidence in them is encouraged by the recognition that seasonal mean rainfall depends on large‐scale drivers of atmospheric circulations that are well resolved by current climate models. Nevertheless, observational and modeling efforts are needed to provide more refined projections of rainfall changes, expanding beyond total accumulation to metrics of intraseasonal characteristics and risk of extreme events, and coordination between climate scientists and stakeholders is needed to generate relevant information that is useful even under deep uncertainty.

    This article is categorized under:

    Paleoclimates and Current Trends > Modern Climate Change

     
    more » « less
  8. Abstract

    In the Tropical Rain belts with an Annual cycle and Continent Model Intercomparison Project (TRACMIP) ensemble of aquaplanet climate model experiments, CO2‐induced warming is amplified in the poles in 10 out of 12 models, despite the lack of sea ice. We attribute causes of this amplification by perturbing individual radiative forcing and feedback components in a moist energy balance model. We find a strikingly linear pattern of tropical versus polar warming contributions across models and processes, implying that polar amplification is an inherent consequence of diffusion of moist static energy by the atmosphere. The largest contributor to polar amplification is the instantaneous CO2forcing, followed by the water vapor feedback and, for some models, cloud feedbacks. Extratropical feedbacks affect polar amplification more strongly, but even feedbacks confined to the tropics can cause polar amplification. Our results contradict studies inferring warming contributions directly from the meridional gradient of radiative perturbations, highlighting the importance of interactions between feedbacks and moisture transport for polar amplification.

     
    more » « less
  9. The Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project (TRACMIP) ensemble—a multimodel ensemble of slab-ocean simulations in idealized configurations—provides a test of the relationship between the zonal mean ITCZ and the cross-equatorial atmospheric energy transports (AHTeq). In a gross sense, the ITCZ position is linearly related to AHTeq, as expected from the energetic framework. Yet, in many aspects, the TRACMIP model simulations do not conform to the framework. Throughout the annual cycle there are large excursions in the ITCZ position unrelated to changes in the AHTeqand, conversely, substantial variations in the magnitude of the AHTeqwhile the ITCZ is stationary at its northernmost position. Variations both in the net vertical energy input at the ITCZ location and in the vertical profile of ascent play a role in setting the model behavior apart from the conceptual framework. Nevertheless, a linear fit to the ITCZ–AHTeqrelationship captures a substantial fraction of the seasonal variations in these quantities as well as the intermodel or across-climate variations in their annual mean values. The slope of the ITCZ–AHTeqlinear fit for annual mean changes across simulations with different forcings and configurations varies in magnitude and even sign from model to model and we identify variations in the vertical profile of ascent as a key factor. A simple sea surface temperature–based index avoids the complication of changes in the vertical structure of the atmospheric circulation and provides a more reliable diagnostic for the ITCZ position.

     
    more » « less
  10. Abstract

    Prior research has shown that dry conditions tend to persist in the Sahel when El Niño develops. Yet, during the historic 2015 El Niño, Sahel summer precipitation was anomalously high, particularly in the second half of the season. This seeming inconsistency motivates a reexamination of the variability of precipitation during recent El Niño years. We identify and composite around two different outcomes for Sahel summer season: an anomalously wet season or an anomalously dry season as El Niño develops to its peak conditions over the observational record spanning 1950–2015. We find consistently cool temperatures across the global tropics outside the Niño-3.4 region when the Sahel is anomalously wet during El Niño years and a lack of cooling throughout the tropics when the Sahel is anomalously dry. The striking differences in oceanic surface temperatures between wet years and dry years are consistent with a rearrangement of the entire global circulation in favor of increased rainfall in West Africa despite the presence of El Niño.

     
    more » « less